CONTAMINATION OF LANDS AND HABITATS OF WILD UNGULATES BY EGGS AND LARVIES OF HELMINTHS OF THE STRONGYLATA SUBORDER

Authors

  • Светлана Васильевна Полоз Fish Industry Institute by Scientific and Practical Center of the National Academy of Sciences of Belarus for Animal Husbandry

DOI:

https://doi.org/10.24852/2411-7374.2023.2.27.37

Keywords:

contamination, helminths of the Strongylata, wild ungulates

Abstract

Different types of forest land are not the same, as are the places of circulation of eggs and larvae of helminths of the Strongylata suborder. Plant formations with a low risk of infection are young pine forests, middle-aged and old pine forests, old mixed forests, spruce forests. Potentially dangerous in terms of infection are bushes of river floodplains and forest meadows. Plant formations with a high risk of infection are young mixed forests, middle-aged mixed forests with undergrowth. The most dangerous for infection are swampy forests and forest swamps. The degree of contamination and accumulation of invasive larvae of helminths of the Strongylata suborder in different lands and habitats is different and differs depending on the season of the year. The most favorable for mass infection is the end of summer, the beginning of autumn, namely August-September. The distribution of eggs and larvae of helminths of the Strongylata suborder in forest lands has a mosaic character. The number of plots depends on the areas preferred by wild ungulates. The movement of wild ungulates across the land occurs also under the influence of the anthropogenic factor, which affects the distribution of infection. If we know the habitats of wild ungulates, we can assess the degree of contamination by eggs and larvae of species and characterize the risk of infecting wild ungulates with them. The number of eggs and larvae of helminths of the Strongylata suborder in excrement may vary over time depending on weather conditions. Infection with helminths of the suborder Strongylata occurs through the trophic links of wild ungulates. The addition of young grass vegetation to the diet of wild ungulates in spring leads to an increase in eggs and larvae of helminths of the Strongylata suborder in excrement. In the autumn season, when wild ungulates switch to rough forages, the number of eggs and larvae of helminths of the Strongylata suborder in excrement decreases.

References

Akhmedov M.A., Zubairova M.M., Ataev A.M., Karsakov N.T., Dzamulatov Z.M. Biological diversity of species of the suborder Strongylata Railliet et Henry, 1913 of the digestive tract of sheep in different ecosystems of the Tersko-Kuma lowland // Veterinary doctor. 2022. Vol. 3. P. 16–22.

Albery G.F., Becker D.J., Kenyon F., Nassey D.H., Pemberton J.M. The Fine-Scale Landscape of Immunity and Parasitism in a Wild Ungulate Population // Integrative and Comparative Biology. 2019. Vol. 59, No 5. P. 1165–1175. doi: 10.1093/icb/icz016.

Albery G.F., Kenyon F., Morris A., Morris S., Nassey D.H., Pemberton J.M. Seasonality of helminth infection in wild red deer varies between individuals and between parasite taxa // Parasitology. 2018. Vol. 145, No 11. P. 1410–1420. doi 10.1017/S0031182018000185.

Chapman C.A., Speirs M.L., Gillespie T.R., Holand T., Austad K.M. Life on the edge: gastrointestinal parasites from the forest edge and interior primate groups // American journal of primatology. 2006. Vol. 68, No 4. P. 397–409. doi 10.1002/ajp.20233.

Cringoli G., Rinaldi L., Veneziano V., Capelli G., Scala A.The influence of flotation solution, sample dilution and the choice of McMaster slide area (volume) on the reliability of the McMaster technique in estimating the faecal egg counts of gastrointestinal strongyles and Dicrocoelium dendriticum in sheep // Veterinary Parasitology. 2004. Vol. 123, No 1–2. P. 121–131. doi: 10.1016/j.vetpar.2004.05.021.

Davidson R.K., Ličina T., Gorini L., Milner J.M. Endoparasites in a Norwegian moose (Alces alces) population – Faunal diversity, abundance and body condition // International journal for parasitology: Parasites and Wildlife. 2015. Vol. 4, No 1. P. 29–36. doi 10.1016/j.ijppaw.2014.12.005.

Dobson A.P., Hudson P.J. Parasites, disease and the structure of ecological communities // Trends in ecology & evolution. 1986. Vol. 1, No 1. P. 11–15. doi: 10.1016/0169-5347(86)90060-1.

Fair J.M., Whitaker S.J. Avian cell-mediated immune response to drought Wilson // Journal of ornithology. 2008. Vol. 120. P. 813–819.

Golubev A.A. Ecological and epizootological monitoring of parasitoses of wild ungulates in the mountain zone of Kabardino-Balkaria [Ekologo-epizootologicheskij monitoring parazitozov dikih kopytnyh zhivotnyh v gornoj zone Kabardino-Balkarii] // Summary of PhD (Cand. of Biol.) Moscow, 2017. 27 p.

Hoberg E.P. Invasive process, mosaics and the structure of helminth parasite faunas [Electronic resource] // Revue scientific et technique. 2010. Vol. 29 (2). URL: https://pubmed.ncbi.nlm.nih.gov/20919581 (accessed: 21.02.2023).

Holmes J.C. Parasites as threats to biodiversity in shrinking ecosystems // Biodiversity & Conservation. 1996. Vol. 5. P. 975–983. doi: 10.1007/bf00054415.

Horcajada-Sánchez F., Navarro-Castilla Á., Boadella M., Barja I. Influence of livestock, habitat type, and density of roe deer (Capreolus capreolus) on parasitic larvae abundance and infection seroprevalence in wild populations of roe deer from central Iberian Peninsula // Mammal research. 2018. V. 63. P. 213–222. doi: 10.1007/s13364-018-0354-4.

Hudson P.J., Dobson A.P., Lafferty K.D. Is a healthy ecosystem one that is rich in parasites? // Trends in ecology & evolution. 2006. Vol. 21, No 7. P. 381–385. doi 10.1016/j.tree.2006.04.007.

Hutchings M.R., Athanasiadou S, Kyriazakis I., Gordon I.J. Can animals use foraging behavior to combat parasites? // Proceedings of the Nutrition Society. 2003. Vol. 62, No 2. P. 361–370. doi: 10/1079/pns2003243.

Jimenez-Albarran M., Odda R. A coprological study of intestinal infections in Northern Morocco (provinces of Tangier, Tetuán and Larache // Revista de sanidad e higiene publica. 1994. Vol. 68, No 3. P. 405–418.

Karmaliyev R.S., Sidihov B.M., Murzabaev K. Invasion of ruminats with helminthes in West Kazakhstan and efficiency of anthelmintics // European scientific conference, 2017. P. 170–173.

Klaus G., Schmidg B. Geophagy at natural licks and mammal ecology: A Review // Mammalia. 2009. Vol. 62, No 4. URL: https://www.degruyter.com/document/doi/10.1515/ mamm.1998.62.4.482b/html (accessed: 20.06.2022).

Klaver I., Keulartz J., van den Belt H. Born to be Wild: A Pluralistic Ethics Concerning Introduced Large Herbivores in the Netherlands // Environmental ethics. 2002. Vol. 24 (1). P. 3–21. doi: 10.5840/enviroethics200224138.

Khristianovsky P., Belimenko V., Platonov S., Grudinin D., Malcev S. Helminthofauna of ruminants and solipeds in the Center for Breeding Steppe Animals «Orenburg Tarpaniya» // XXII International scientific conference energy management of municipal facilities and sustainable energy technologies (EMMFT-2020). 2021. Vol. 244. URL: https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/20/e3sconf_emmft2020_02002.pdf (accessed: 21.02.2023).

Kokolova L.M., Gavrilieva L.Yu., Stepanova S.M., Dulova C.V., Romanov I.I. Research on parasitic diseases in game animals in the ecosystem of the Far North // Astrakhan bulletin of ecological education. 2019. No 5. P. 131¬–135.

Magi M., Bertani. M., Dell’Omodarme M., Prati M.C., Poglayen G. Seasonal egg output of gastrointestinal parasites in wild ungulates in a Mediterranean area (Central Italy) // Hystrix the Italian journal of mammalogy. 2005. Vol. 16, No 2. P. 169–177.

Marshal J.P., Krausman P.K., Bleich V.C. Body condition of mule deer in the Sonoran Desert is related to rainfall // The Southwestern naturalist. 2008. Vol. 53. P. 311–318. Doi: 10.1894/CJ-143.1.

Moriya S. The reliability of the current diagnostic metods for the identification of helminth eggs // Parasitology. 1954. Vol. 44, No3–4. P. 300–303. doi: 10.1017/s0031182000018928.

Moustafa M.A.M., Chel H.M., Thu M.J., Bawm S., Htun L.L., Win M.M., Oo Z.M., Ohsawa N., Lahdenperä M., Mohamed W.M.A., Ito K., Nonaka N., Nakao R., Katakura K. Anthropogenic interferences lead to gut microbiome dysbiosis in Asian elephants and may alter adaptation processes to surrounding environments [Electronic resource] // Scientific Reports. 2021. Vol. 11. URL: https://www.nature.com/articles/s41598-020-80537-1 (accessed: 21.02.2022).

Mutwiri G. L. Prevalence and Intensity of Infection with Gastrointestinal Parasites in Thomson’s Gazelles on Marula Ranch in Kenya [Electronic resource] // University of Nairobi research archive. 2013. URL: http://erepository.uonbi.ac.ke:8080/xmlui/handle/123456789/57895 (accessed: 21.02.2023).

Nunn C.L., Thrall P.H., Leendertz F.H., Boesch C. The spread of fecally transmitted parasites in socially-structured populations [Electronic resource] // PLOS ONE. 2011. URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0021677 (accessed: 20.06.2022).

O'Connor L.J., Kahn L.P., Walkden-Brown S.W. Moisture requirements for the free-living development of Haemonchus contortus: quantitative and temporal effects under conditions of low evaporation // Veterinary parasitology. 2007. Vol. 150. P. 128–138. doi 10.1016/j.vetpar.2007.07.021.

Oja R., Velström K. Moks E., Jokelainen P., Lassen B. How does supplementary feeding affect endoparasite infection in wild boar? // Parasitology research. 2017. Vol. 116. P. 2131–2137. doi: 10.1007/s00436-017-5512-0.

Pato F.J., Vázquez L., Díez-Baños N., López C., Sánchez-Andrade R., Fernández G., Díez-Baños P., Panadero R., Díaz P., Morrondo P. Gastrointestinal nematode infections in roe deer (Capreolus capreolus) from the NW of the Iberian Peninsula: Assessment of some risk factors // Veterinary Parasitology. 2013. Vol. 196, No 1–2. P. 136–142. doi: 10.1016/j.vetpar.2013.01.027.

Penkevich V. A. Helminthological assessment of wild boar biotopes of the Polesye state radiation-ecological reserve // Scientific notes of the educational institution «Vitebsk Order of the Badge of Honor» State Academy of Veterinary Medicine. Vitebsk, 2012. Vol. 48, No 2. P. 13–15.

Romanov V.S., Kozlo P.G., Padajga V.I. Hunting science. Minsk, 2005. 448 p.

Samoilovskaya N.A. Factors influencing the formation of parasite fauna in wild ungulates in forest ecosystems of the central region of Russia // Russian parasitological journal. 2014. Vol. 1. P. 40–43.

Shearer C.L., Ezenwa V.O. Rainfall as a driver of seasonality in parasitism // International Journal for Parasitology: Parasites and Wildlife. 2020. Vol. 12. P. 8–12. doi: 10.1016/j.ijppaw.2020.04.004.

Tretyakov A. M., Kiriltsov E V, Chernih V. G., Boryaev G. I. Conservation of commercially hunted ungulates biodiversity in Transbaikalia by ensuring efficient veterinary measures [Electronic resource] // IOP Conference Series: earth and environmental science, Vol. 953, Volga Region Farmland, 2021. Penza, 2021. URL: https://iopscience.iop.org/article/10.1088/1755-1315/953/1/012042/pdf (accessed: 01.02.2022).

Downloads

Published

2023-06-26

How to Cite

Полоз, С. В. (2023). CONTAMINATION OF LANDS AND HABITATS OF WILD UNGULATES BY EGGS AND LARVIES OF HELMINTHS OF THE STRONGYLATA SUBORDER . Russian Journal of Applied Ecology, (2), 27–37. https://doi.org/10.24852/2411-7374.2023.2.27.37

Issue

Section

Ecology of natural systems