@article{Валиев_Valiev_Шагидуллин_2020, title={АНАЛИЗ МИРОВОГО ОПЫТА УТИЛИЗАЦИИ ОСАДКА ГОРОДСКИХ СТОЧНЫХ ВОД}, url={https://rjae.ru/index.php/rjae/article/view/26}, abstractNote={<p>Обобщен мировой опыт утилизации осадков сточных вод. Рассмотрены основные направления утилизации осадка, применяемые в европейских странах и США. Показаны их преимущества и недостатки с учетом экологической и экономической эффективности.</p> <p>Библиографические ссылки</p> <p>Афанасьев Р.А., Мерзлая Г.Е. Подготовка и использование осадков сточных вод в качестве удобрения // Водоснабжение и санитарная техника. 2003. №1. С. 25–29.</p> <p>Будыкина Т.А. Переработка осадков сточных вод. М.: Креативная экономика, 2012. 188 с.</p> <p>Будыкина Т.А. Сушка осадка производственных сточных вод в естественных условиях // Вестник Российского университета дружбы народов. Серия: Экология и безопасность жизнедеятельности. 2017. Т. 25, № 2. С. 242‒252.</p> <p>Дрегуло А.М., Питулько В.М. Анализ технических решений извлечения тяжелых металлов из гетерогенных отходов систем водоотведения // Известия ТулГУ. Науки о земле. 2018. Вып. 2. С. 28‒39.</p> <p>Кармазинов Ф.В., Пробирский М.Д., Васильев Б.В. <a href="https://catalog.belstu.by/catalog/articles/doc/17421">Опыт Водоканала Санкт-Петербурга по обработке и утилизации осадков</a> // Водоснабжение и санитарная техника. 2002. №12. С. 12‒15.</p> <p>Кнатько В.М., Щербакова Е.В., Кнатько М.В. Решение проблемных задач геоэкологии с использованием минерально-матричной технологии // Вестник Санкт-Петербургского университета. Сер. 2006. Вып. 4. С. 3‒12.</p> <p>Кнатько М.В., Жабриков С.Ю. Использование ИММ-технологии для снижения негативного техногенного воздействия на литосферу, оказываемого деятельностью ЖКХ // Инновации и инвестиции. 2015. №4. С. 224‒226.</p> <p>Насыров И.А., Маврин Г.В., Шайхиев И.Г. Проблемы утилизации иловых осадков очистных сооружений // Вестник технологического университета. 2015. Т. 18, №19. C. 257‒259.</p> <p>НПК Геотуб. URL: http://geotub.ru/manufacture (Дата обращения: 15.10.2020).</p> <p>Патент РФ на изобретение № 2183206 / 10.06.02. Бюл. № 16. Ханин А.Б., Будыкина Т.А., Шевцов О.А., Студеникин В.И. Способ подготовки вспучивающего компонента для сырьевой смеси производства керамзита.</p> <p>Пугачев Е.А. Очистка городских сточных вод мегаполиса. М.: Изд-во АСВ, 2015. 136 с.</p> <p>Туровский И.С. Осадки сточных вод. Обезвоживание и обеззараживание. М.: ДеЛи принт, 2008. 376 с.</p> <p>Цивадзе А.Ю., Фридман А.Я., Морозова Е.М. Перспективы реформинга структуры частиц осадков иловых карт очистных сооружений в структуры безопасных глин или суглинков // Universum: химия и биология. 2016. №5 .URL: http://7universum.com/ru/nature/archive/item/3155 (Дата обращения: 15.10.2020).</p> <p>Яковлев С.В. Водоотведение и очистка сточных вод. М.: Стройиздат, 1974. 480 с.</p> <p>Babel S., del Mundo D.D. Heavy metal removal from contaminated sludge for land application: a review // Waste management. 2006. V. 26. P. 988‒1004. doi: 10.1016/j.wasman.2005.09.017.</p> <p>Chen H., Yan S.-H., Ye Z.-L., Meng H.-J., Zhu Y.-G. Utilization of urban sewage sludge: Chinese perspectives // Environmental science and pollution research international. 2012. V. 19. P. 1454-1463. doi: 10.1007/s11356-012-0760-0.</p> <p>Deitch J. Economics of food irradiation // <a href="https://www.tandfonline.com/toc/bfsn20/current">Critical reviews in food science and nutrition</a>. 1982. V. 17, iss. 4. P. 307-334. doi: 10.1080/10408398209527352.</p> <p>Donatello S., Cheeseman C.R., Tyler. M. EU landfill waste acceptance criteria and EU Hazardous Waste Derective compliance testing of incinerated sewage sludge ash // Waste management. 2010. V. 30. Р. 63–71. doi: 10.1016/j.wasman.2009.09.028.</p> <p>Experimental study on the use urban sewage sludge on Mediterranean forest // Utilization of sewage sludge on land. Boston, 1984. P. 61–78.</p> <p>Fertilizing forests with sludge // Biocycle. 1985. V. 25. P. 8–52.</p> <p>Gusiatin Z.M., Kulikowska D., Klik B.K., Hajdukiewicz K. Ecological risk assessment of sewage sludge from municipal wastewater treatment plants: a case study // Journal of Environmental science and health. Part A: Environmental science and engineering and toxicology. V. 53, iss. 13 P. 1167‒1176. doi:10.1080/10934529.2018.1530333.</p> <p>Hani H., Siegenthaler A., Candinas T. Soil effect due to sewage sludge application in agriculture // Fertilizer research. 1995. V. 43, iss. 1. P. 149–156.</p> <p>Harbour P.J., Aziz A.A., Scales P.J., Dixon D.R. Prediction of the dewatering of selected inorganic sludges // Water science and technology. 2001. V. 44. P. 191‒196.</p> <p>Harrison E.Z., Eaton M.M. The role of municipalities in regulating the land application of sewage sludges and septage // Natural resources journal. V. 41. P. 1–47.</p> <p>Harrison E.Z., Oakes S.R. Investigation of alleged health incidents associated with land application of sewage sludges // New solutions: a journal of environmental and occupational health policy. 2003. V. 12, iss. 4. P. 387–408.</p> <p>Hernández A.B., Okonta F., Freeman N. Thermal decomposition of sewage sludge under N2, CO2 and air: Gas characterization and kinetic analysis // Journal of environmental management. 2017. V. 196. P. 560‒568. https://doi.org/10.1016/j.jenvman.2017.03.036.</p> <p>Janas M., Zawadzka A., Cichowicz R. The influence of selected factors on leaching of metals from sewage sludge // <em>Environmental science</em>and <em>pollution research</em>. 2018. V. 25. P. 33240‒33248. doi: <a href="https://dx.doi.org/10.1007%2Fs11356-018-3094-8">1007/s11356-018-3094-8</a>.</p> <p>Jensen J., Ingvertsen S. T., Magid J. Risk evaluation of five groups of persistent organic contaminants in sewage sludge. Environmental project. № 1406. The Danish environmental protection agency, 2012. 130 p.</p> <p>Jin Z., Chang F., Meng F., Wang C., Meng Y., Liu X., Wu J., Zuo J., Wang K. Sustainable pyrolytic sludge-char preparation on improvement of closed-loop sewage sludge treatment: Characterization and combined in-situ application // Chemosphere. 2017. V. 184. Р. 1043‒1053. doi: <a href="https://doi.org/10.1016/j.chemosphere.2017.06.029">1016/j.chemosphere.2017.06.029</a>.</p> <p>Kelessidis A., Stasinakis A.S. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries // Waste management. 2012. V. 32, iss. 6. P. 1186‒1195. doi: 10.1016/j.wasman.2012.01.012.</p> <p>Kopp J., Dichtl N. Prediction of full-scale dewatering results of sewage sludges by the physical water distribution // Water science and technology. 2001. V. 43, iss. 11. P. 135‒143.</p> <p>Li C., Wang X., Zhang G., Li J., Li Z., Yu G., Wang Y. A process combining hydrothermal pretreatment, anaerobic digestion and pyrolysis for sewage sludge dewatering and co-production of biogas and biochar: Pilot-scale verification // Bioresources technology. V. 254. Р. 187‒193. doi: <a href="https://doi.org/10.1016/j.biortech.2018.01.045">10.1016/j.biortech.2018.01.045</a>.</p> <p>Liu H.T. Achilles heel of environmental risk from recycling of sludge to soil as amendment: A summary in recent ten years (2007-2016) // Waste management. 2016. V. 56. P. 575‒583. doi: 10.1016/j.wasman.2016.05.028.</p> <p>Lu Y., Xu Y., Dong B., Dai X. Effects of free nitrous acid and nitrite on two-phase anaerobic digestion of waste activated sludge: a preliminary study // Science of total environment. 2019. V. 654. Р. 1064‒1071. doi: <a href="https://doi.org/10.1016/j.scitotenv.2018.11.033">1016/j.scitotenv.2018.11.033</a>.</p> <p>Mailler R., Gasperi J., Chebbo G., Rocher V. Priority and emerging pollutants in sewage sludge and fate during sludge treatment // Waste management. 2014. V. 34, iss. 7. P. 1217‒1226. doi: 10.1016/j.wasman.2014.03.028.</p> <p>Malhotra M., Garg A. Performance of non-catalytic thermal hydrolysis and wet oxidation for sewage sludge degradation under moderate operating conditions // Journal of environmental management. 2019. V. 238. Р. 72‒83. doi: <a href="https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.jenvman.2019.02.094?_sg%5B0%5D=6ulBuXaad6mOHhA3l9U3aNxfqarT3of3A3a3YYhNaCeHmcMWCgioHwk1YOlqiQcpubY9kwJOt7l3uDiPsr4NcjN9_Q.pUWKuS6apfWalrGSRpsm_J_PwePTcSO8rzqO4xuQ0QWhUELzfsEZFpBp3o5F2Mp0eTYLfe3_12IUcZDmo1Hkyw">1016/j.jenvman.2019.02.094</a>.</p> <p>Mathney J.M. A critical review of the U.S. EPA's risk assessment for the land application of sewage sludge // New solutions: a journal of environmental and occupational health policy. 2011. V. 21, iss. 1. P. 43‒56. doi: 10.2190/NS.21.1.h.</p> <p>McGrath S.P., Chang A.C., Page A.L., Witter E. Land application of sewage sludge: scientific perspectives of heavy metal loading limits in Europe and the United States // Environmental review. 1994. V. 2. P. 108–118.</p> <p>Mian M.M., Liu G., Fu B. Conversion of sewage sludge into environmental catalyst and microbial fuel cell electrode material // Science of total environment. 2019. V. 17. P. 525‒539. doi: <a href="https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.scitotenv.2019.02.200?_sg%5B0%5D=mec9r1rk8Ckl-lUjm7CcahLKpDLQXtmTM7iYE0_akzGDQoFAp3Fxs-X-JEo2EjEQBsvAvf5DL1sZGGv7Z2Gw_9NHvg.34b6qPAe87uLCC59DN58uwRGO-qhS3vCxKU6mjYh-Iw1SQ0sS-KKsQ29OS2367IGgpSE17kldSKlTEh0XFSRjw">1016/j.scitotenv.2019.02.200</a>.</p> <p>Morgano M.T., Leibold H., Richter F., Stapf D., Seifert H. Screw pyrolysis technology for sewage sludge treatment // Waste management. 2018. V. 73. Р. 487‒495. doi: <a href="https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.wasman.2017.05.049?_sg%5B0%5D=pZAeDh6eEV1ztBaSFFH7JQJ5J6moIVfvemorO2a0CK23COqvWmQLYGuju-e0RO2IwrBVorX630rJSnqHi2zxwaZEFA.SokGLvzTmBmAMho6PycEbrLLn7R-dik_5vloe9MZ8Mm82j876vHNzJQImdGiTtW7y0iUEFeMNknwm-FH5YTmwQ">1016/j.wasman.2017.05.049</a>.</p> <p>Nielsen P.H., Frolund B., Keiding K. Changes in the composition of extracellular polymeric substances in activated sludge during anaerobic storage // <em>Applied microbiology and biotechnology</em>. V. 44, iss. 6. P. 823–830. doi:10.1007/BF00178625.</p> <p>Nikovskaya G.N., Kalinichenko K.V., Legenchuk A.V., Ulberg Z.R. Heavy metals in sludge sediment after biochemical purification of municipal wastewaters // Journal of water chemistry technology. 2011. V. 33, iss. 5. P. 333–338. doi: 10.3103/S1063455X11050109.</p> <p>Parravicini V., Svardal K., Hornek R., Kroiss H. Aeration of anaerobically digested sewage sludge for COD and nitrogen removal: optimization at large-scale // Water science and technology. 2008. V. 57, iss. 2. P. 257‒264. doi: 10.2166/wst.2008.020.</p> <p>Research programme on recycling sewage sludge to agricultural land. Rationale and objectivities — ROAME statement for 2002/03 to 2007/08. UK, 2002.</p> <p>Sigua G.C., Adjei M.B., Rechcigl J.E. Cumulative and residual effects of repeated sewage sludge applications: forage productivity and soil quality implications in South Florida, USA // Environmental science and pollution research. 2005. V. 12, iss. 2. P. 80‒88. doi: 10.1065/espr2004.10.220.</p> <p>Singh R.P., Agrawal M. Potential benefits and risks of land application of sewage sludge // Waste Management. 2008. V. 28, iss. 2. P. 347‒358. doi: 10.1016/j.wasman.2006.12.010.</p> <p>Smith S.R. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge // Environmental international. 2009. V. 35. P. 142‒156. doi: 10.1016/j.envint.2008.06.009.</p> <p>Targeted National Sewage Sludge Survey: Statistical Analysis Report. EPA-822-R-08- 018. U. S. Environmental Protection Agency. Washington, 2009. 58 p.</p> <p>To V.H., Nguyen T.V., Vigneswaran S., Ngo H.H. A review on sludge dewatering indices // Water science and technology. 2016. V. 74, iss. 1. P. 1‒16. doi: 10.2166/wst.2016.102.</p> <p>Trajano D.G.S., Dias E., Ebdon J., Taylor H. Assessment of recommended approaches for containment and safe handling of human excreta in emergency settings // PLoS One. 2018. V. 13, iss. 7. doi: <a href="https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1371%2Fjournal.pone.0201344?_sg%5B0%5D=wfPIqB4jgILMUI2B5_93A7xUbAvi6Awhukd0-yPnyj6cvmNxypN0VUdAk415G20-le1fXkMqjSXclIuLqSJPzw2TCQ.DSSa3z8rzHQPoEDbjwZI6_GPzCwxPsp12NKQEBF1I5aEb-0I5E86fi9-b9FZzJXtpakeXg5itFwxPpF8htWy7w">10.1371/journal.pone.0201344</a>.</p> <p>Wang H., Brown S.L., Magesan G.N., SladeA.H., Quintern M., Clinton P.W., Payn T.W. Technological options for the management of biosolids // Environmental science and pollution research. 2008. V. 15, iss 4. P. 308‒317. doi: 10.1007/s11356-008-0012-5.</p> <p>Wang L.F., Qian C., Jiang J.K., Ye X.D., Yu H.Q. Response of extracellular polymeric substances to thermal treatment in sludge dewatering process // Environmental pollution. 2017. V. 231(Pt 2). P. 1388‒1392. doi: <a href="https://doi.org/10.1016/j.envpol.2017.08.119">1016/j.envpol.2017.08.119</a>.</p> <p>Wei L., Zhu F., Li Q., Xue C., Xia X., Yu H., Zhao Q., Jiang J., Bai S. Development, current state and future trends of sludge management in China: Based on exploratory data and CO<sub>2</sub>-equivaient emissions analysis // Environmental international. 2020. V. 144. 106093. doi: 10.1016/j.envint.2020.106093.</p> <p>Wu B., Dai X., Chai X. Critical review on dewatering of sewage sludge: Influential mechanism, conditioning technologies and implications to sludge re-utilizations // Water research. 2020. V. 180. 15912. doi: 10.1016/j.watres.2020.115912.</p> <p>Yang G., Zhang G., Wang H. Current state of sludge production, management, treatment and disposal in China // Water research. 2015. V. 78. P. 60‒73. doi: 10.1016/j.watres.2015.04.002.</p> <p>Yin Z., Hoffmann M., Jiang S. Sludge disinfection using electrical thermal treatment: the role of ohmic heating // Science of the total environment. 2018. V. 615. P. 262‒271. <a href="https://doi.org/10.1016/j.scitotenv.2017.09.175">https://doi.org/10.1016/j.scitotenv.2017.09.175</a>.</p>}, number={4}, journal={Российский журнал прикладной экологии}, author={Валиев , Всеволод Сергеевич and Valiev Дмитрий Владимирович and Шагидуллин , Рифгат Роальдович}, year={2020}, month={дек.}, pages={43–51} }