ВЛИЯНИЕ ТЯЖЕЛЫХ МЕТАЛЛОВ НА ДИНАМИКУ ЧИСЛЕННОСТИ И ФЛУОРЕСЦЕНТНЫЕ ХАРАКТЕРИСТИКИ PROROCENTRUM FORAMINOSUM (DINOPHYTA)

Авторы

  • Жанна Васильевна Маркина Национальный научный центр морской биологии им. А.В. Жирмунского ДВО РАН
  • Альбина Васильевна Огнистая Дальневосточный федеральный университет
  • Антон Андреевич Зинов Дальневосточный федеральный университет

DOI:

https://doi.org/10.24852/2411-7374.2023.1.61.68

Ключевые слова:

Prorocentrum foraminosum, тяжелые металлы, численность клеток, флуоресценция хлоропласта, зеленая флуоресценция динофлагеллят

Аннотация

Проведена оценка динамики численности, внешнего вида клеток, флуоресценции хлоропласта и зеленой автофлуоресценции клеток (ЗАФ) динофлагелляты Prorocentrum foraminosum при воздействии тяжелых металлов: кадмия Cd2+, никеля Ni2+ и свинца Pb2+ в концентрациях 10 и 20 мкг/л. Показано, что все металлы в изученных концентрациях оказали ингибирующее влияние на численность клеток: наименьшее воздействие оказал Cd2+. Морфологически клетки не изменялись при воздействии Cd2+, Pb2+, а при добавлении Ni2+ отмечена деформация клеток. Флуоресценция хлоропласта изменялась при воздействии металлов, за исключением Cd2+. В целом, ЗАФ не изменялась при наличии в среде Cd2+, увеличивалась при добавлении Ni2+, снижалась – Pb2+. Предложено использовать ЗАФ для экспресс оценки токсичности веществ и качества вод.

Список литературы

  1. Качество морских вод по гидрохимическим показателям. Ежегодник 2019. М: Наука, 2020. 230 с.
  2. Качество морских вод по гидрохимическим показателям. Ежегодник 2020. М: Наука, 2021. 281 с.
  3. Селина М.С. Морфология и сезонная динамика потенциально токсичной микроводоросли Prorocentrum foraminosum Faust 1993 (Dinophyta) в заливе Петра Великого Японского моря // Биология моря. 2017. Т. 43, №3. С. 169–174. doi: 10.1134/S1063074017030099.
  4. Ясакова О.Н. Сезонная динамика фитопланктона Новороссийской бухты в 2007 г. // Морской экологический журнал. 2013. Т. 12, №1. С. 92–102.
  5. Carfagna S., Lanza N., Salbitani G., Basile A. Physiological and morphological responses of lead or cadmium exposed Chlorella sorokiniana 211-8K (Chlorophyceae) // SpringerPlus. 2013. Vol. 2 (1). P. 1–7. doi: 10.1186/2193-1801-2-147.
  6. Cheng J., Qiu H., Chang Z. The effect of cadmium on the growth and antioxidant response for freshwater algae Chlorella vulgaris // SpringerPlus. 2016. Vol. 5 (1). P. 1–8. doi: 10.1186/s40064-016-2963-1.
  7. Chia M.A., Lombardi A.T., Maria da Graça G.M., Parrish C.C. Lipid composition of Chlorella vulgaris (Trebouxiophyceae) as a function of different cadmium and phosphate concentrations // Aquatic toxicology. 2013. Vol. 128. P. 171–182. doi: 10.1016/j.aquatox.2012.12.004.
  8. Faust M.A. Three new benthic species of Prorocentrum (Dinophyceae) from Twin Cays, Belize: P. maculosum sp. nov., P. foraminosum sp. nov. and P. formosum sp. nov. // Phycologia. 1993. Vol. 32 (6). P. 410–418. doi: 10.2216/i0031-8884-32-6-410.1.
  9. Gan T., Zhao N., Yin G., Chen M. Optimal chlorophyll fluorescence parameter selection for rapid and sensitive detection of lead toxicity to marine microalgae Nitzschia closterium based on chlorophyll fluorescence technology // Journal of photochemistry and photobiology B: Biology. 2019. Vol. 197. 111551. doi: 10.1016/j.jphotobiol.2019.111551.
  10. Gissi F., Adams M.S., King C.K., Jolley D.F. A robust bioassay to assess the toxicity of metals to the Antarctic marine microalga Phaeocystis antarctica // Environmental toxicology and chemistry. 2015. Vol. 34 (7). P. 1578–1587. doi: 10.1002/etc.2949.
  11. Guillard R.R.L., Ryther J.H. Studies of marine planktonic diatoms. 1. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. // Canadian journal of microbiology. 1962. Vol. 8 (2). P. 229–239. doi: 10.1139/m62-029.
  12. Huang X.G., Li S.X., Liu F.J. Regulated effects of Prorocentrum donghaiense Lu exudate on nickel bioavailability when cultured with different nitrogen sources // Chemosphere. 2018. Vol. 197. P. 57–64. doi: 10.1016/j.chemosphere.2018.01.014.
  13. Kameneva P.A., Efimova K.V., Rybin V.G., Orlova T.Y. Detection of dinophysistoxin-1 in clonal culture of marine dinoflagellate Prorocentrum foraminosum (Faust MA, 1993) from the Sea of Japan // Toxins. 2015. Vol. 7 (10). P. 3947–3959. doi: 10.3390/toxins7103947.
  14. Li M., Zhang F., Glibert P.M. Seasonal life strategy of Prorocentrum minimum in Chesapeake Bay, USA: Validation of the role of physical transport using a coupled physical–biogeochemical–harmful algal bloom model // Limnology and oceanography. 2021. Vol. 66 (11). P. 3873–3886. doi: 10.1002/lno.11925.
  15. Liu D., Shi Y., Di B., Sun Q. The impact of different pollution sources on modern dinoflagellate cysts in Sishili Bay, Yellow Sea, China // Marine micropaleontology. 2012. Vol. 84. P. 1–13. doi: 10.1016/j.marmicro.2011.11.001.
  16. Mallick N., Mohn F.H. Use of chlorophyll fluorescence in metal-stress research: a case study with the green microalga Scenedesmus // Ecotoxicology and environmental safety. 2003. Vol. 55 (1). P. 64–69. doi: 10.1016/S0147-6513(02)00122-7.
  17. Masmoudi S., Nguyen-Deroche N., Caruso A. Cadmium, copper, sodium and zinc effects on diatoms: from heaven to hell – a review // Cryptogamie, Algologie. 2013. Vol. 34 (2). P. 185–225. doi: 10.7872/crya.v34.iss2.2013.185.
  18. Nagajyoti P.C., Lee K.D., Sreekanth T.V.M. Heavy metals, occurrence and toxicity for plants: a review // Environmental chemistry letters. 2010. Vol. 8 (3). P. 199–216. doi: 10.1007/s10311-010-0297-8.

19.Shin H.H., Li Z., Mertens K.N., Seo M.H. Prorocentrum shikokuense Hada and P. donghaiense Lu are junior synonyms of P. obtusidens Schiller, but not of P. dentatum Stein (Prorocentrales, Dinophyceae) // Harmful algae. 2019. Vol. 89. 101686 p. doi: 10.1016/j.hal.2019.101686.

  1. Soyer M.O., Prevot P. Ultrastructural damage by cadmium in a marine dinoflagellate, Prorocentrum micans // The journal of protozoology. 1981. Vol. 28 (3). P. 308–313. doi: 10.1111/j.1550-7408.1981.tb02856.x.
  2. Taş S., Okuş E. A review on the bloom dynamics of a harmful dinoflagellate Prorocentrum minimum in the Golden Horn Estuary // Turkish Journal of fisheries and aquatic sciences. 2011. Vol. 11 (4). P. 673–681. doi: 10.4194/1303-2712-v11_4_03.
  3. Tang Y.Z., Dobbs F.C. Green autofluorescence in dinoflagellates, diatoms, and other microalgae and its implications for vital staining and morphological studies // Applied and environmental microbiology. 2007. Vol. 73 (7). P. 2306–2313. doi: 10.1128/AEM.01741-06.
  4. Tang Y.Z., Shang L., Dobbs F.C. Measuring viability of dinoflagellate cysts and diatoms with stains to test the efficiency of facsimile treatments possibly applicable to ships’ ballast water and sediment // Harmful Algae. 2022. Vol. 114.102220. doi: 10.1007/s11802-020-4480-7.
  5. Tato T., Beiras R. The use of the marine microalga Tisochrysis lutea (T-iso) in standard toxicity tests; comparative sensitivity with other test species // Frontiers in marine science. 2019. Vol. 6. 488 p. doi: 10.3389/fmars.2019.00488.

25.Wang H., Hu Z., Chai Z., Deng Y. Blooms of Prorocentrum donghaiense reduced the species diversity of dinoflagellate community // Acta oceanologica sinica. 2020. Vol. 39 (4). P. 110–119. doi: 10.1007/s13131-020-1585-1.

  1. Weng H.X., Sun X.W., Weng J.K. Crucial roles of iron in the growth of Prorocentrum micans Ehrenberg (Dinophyceae) // Journal of coastal research. 2008. Vol. 24. P. 176–183. doi: 10.2112/06-0819.1.

27. Zamani-Ahmadmahmoodi R., Malekabadi M.B., Rahimi R. Aquatic pollution caused by mercury, lead, and cadmium affects cell growth and pigment content of marine microalga, Nannochloropsis oculata // Environmental monitoring and assessment. 2020. Vol. 192 (6). P. 1–11. doi: 10.1007/s10661-020-8222-5.

Библиографические ссылки

Kachestvo morskih vod po gidrohimicheskim pokazatelyam Ezhegodnik 2019 [Sea water quality according to hydrochemical indicators. Annual collection 2019]. Moscow: Nauka, 2020. 230 p.

Kachestvo morskih vod po gidrohimicheskim pokazatelyam Ezhegodnik 2020 [Sea water quality according to hydrochemical indicators. Annual collection 2020]. Moscow: Nauka, 2021. 281 p.

Selina M.S. Morfologiya i sezonnaya dinamika potencial'no toksichnoj mikrovodorosli Prorocentrum foraminosum Faust 1993 (Dinophyta) v zalive Petra Velikogo Yaponskogo morya [Morphology and seasonal dynamics of potentially toxic microalgae Prorocentrum foraminosum Faust 1993 (Dinophyta) in Peter the Great Bay of the Sea of Japan] // Biologiya morya [Russian Journal of marine biology]. 2017. Vol. 43, No 3. P. 169–174. doi: 10.1134/S1063074017030099.

Yasakova O.N. Sezonnaya dinamika fitoplanktona Novorossijskoj buhty v 2007 godu [Seasonal dynamics of phytoplankton of Novorossiysk Bay in 2007] // Morskoj ekologicheskij zhurnal [Marine biological journal]. 2013. Vol. 12, No 1. Р. 92–102.

Carfagna S., Lanza N., Salbitani G., Basile A. Physiological and morphological responses of lead or cadmium exposed Chlorella sorokiniana 211-8K (Chlorophyceae) // SpringerPlus. 2013. Vol. 2 (1). P. 1–7. doi: 10.1186/2193-1801-2-147.

Cheng J., Qiu H., Chang Z. The effect of cadmium on the growth and antioxidant response for freshwater algae Chlorella vulgaris // SpringerPlus. 2016. Vol. 5 (1). P. 1–8. doi: 10.1186/s40064-016-2963-1.

Chia M.A., Lombardi A.T., Maria da Graça G.M., Parrish C.C. Lipid composition of Chlorella vulgaris (Trebouxiophyceae) as a function of different cadmium and phosphate concentrations // Aquatic toxicology. 2013. Vol. 128. P. 171–182. doi: 10.1016/j.aquatox.2012.12.004.

Faust M.A. Three new benthic species of Prorocentrum (Dinophyceae) from Twin Cays, Belize: P. maculosum sp. nov., P. foraminosum sp. nov. and P. formosum sp. nov. // Phycologia. 1993. Vol. 32 (6). P. 410–418. doi: 10.2216/i0031-8884-32-6-410.1.

Gan T., Zhao N., Yin G., Chen M. Optimal chlorophyll fluorescence parameter selection for rapid and sensitive detection of lead toxicity to marine microalgae Nitzschia closterium based on chlorophyll fluorescence technology // Journal of photochemistry and photobiology B: Biology. 2019. Vol. 197. 111551. doi: 10.1016/j.jphotobiol.2019.111551.

Gissi F., Adams M.S., King C.K., Jolley D.F. A robust bioassay to assess the toxicity of metals to the Antarctic marine microalga Phaeocystis antarctica // Environmental toxicology and chemistry. 2015. Vol. 34 (7). P. 1578–1587. doi: 10.1002/etc.2949.

Guillard R.R.L., Ryther J.H. Studies of marine planktonic diatoms. 1. Cyclotella nana Hustedt and Detonula confervacea(Cleve) Gran. // Canadian journal of microbiology. 1962. Vol. 8 (2). P. 229–239. doi: 10.1139/m62-029.

Huang X.G., Li S.X., Liu F.J. Regulated effects of Prorocentrum donghaiense Lu exudate on nickel bioavailability when cultured with different nitrogen sources // Chemosphere. 2018. Vol. 197. P. 57–64. doi: 10.1016/j.chemosphere.2018.01.014.

Kameneva P.A., Efimova K.V., Rybin V.G., Orlova T.Y. Detection of dinophysistoxin-1 in clonal culture of marine dinoflagellate Prorocentrum foraminosum (Faust MA, 1993) from the Sea of Japan // Toxins. 2015. Vol. 7 (10). P. 3947–3959. doi: 10.3390/toxins7103947.

Li M., Zhang F., Glibert P.M. Seasonal life strategy of Prorocentrum minimum in Chesapeake Bay, USA: Validation of the role of physical transport using a coupled physical–biogeochemical–harmful algal bloom model // Limnology and oceanography. 2021. Vol. 66 (11). P. 3873–3886. doi: 10.1002/lno.11925.

Liu D., Shi Y., Di B., Sun Q. The impact of different pollution sources on modern dinoflagellate cysts in Sishili Bay, Yellow Sea, China // Marine micropaleontology. 2012. Vol. 84. P. 1–13. doi: 10.1016/j.marmicro.2011.11.001.

Mallick N., Mohn F.H. Use of chlorophyll fluorescence in metal-stress research: a case study with the green microalga Scenedesmus // Ecotoxicology and environmental safety. 2003. Vol. 55 (1). P. 64–69. doi: 10.1016/S0147-6513(02)00122-7.

Masmoudi S., Nguyen-Deroche N., Caruso A. Cadmium, copper, sodium and zinc effects on diatoms: from heaven to hell – a review // Cryptogamie, Algologie. 2013. Vol. 34 (2). P. 185–225. doi: 10.7872/crya.v34.iss2.2013.185.

Nagajyoti P.C., Lee K.D., Sreekanth T.V.M. Heavy metals, occurrence and toxicity for plants: a review // Environmental chemistry letters. 2010. Vol. 8 (3). P. 199–216. doi: 10.1007/s10311-010-0297-8.

Shin H.H., Li Z., Mertens K.N., Seo M.H. Prorocentrum shikokuense Hada and P. donghaiense Lu are junior synonyms of P. obtusidens Schiller, but not of P. dentatum Stein (Prorocentrales, Dinophyceae) // Harmful algae. 2019. Vol. 89. 101686 p. doi: 10.1016/j.hal.2019.101686.

Soyer M.O., Prevot P. Ultrastructural damage by cadmium in a marine dinoflagellate, Prorocentrum micans // The journal of protozoology. 1981. Vol. 28 (3). P. 308–313. doi: 10.1111/j.1550-7408.1981.tb02856.x.

Taş S., Okuş E. A review on the bloom dynamics of a harmful dinoflagellate Prorocentrum minimum in the Golden Horn Estuary // Turkish Journal of fisheries and aquatic sciences. 2011. Vol. 11 (4). P. 673–681. doi: 10.4194/1303-2712-v11_4_03.

Tang Y.Z., Dobbs F.C. Green autofluorescence in dinoflagellates, diatoms, and other microalgae and its implications for vital staining and morphological studies // Applied and environmental microbiology. 2007. Vol. 73 (7). P. 2306–2313. doi: 10.1128/AEM.01741-06.

Tang Y.Z., Shang L., Dobbs F.C. Measuring viability of dinoflagellate cysts and diatoms with stains to test the efficiency of facsimile treatments possibly applicable to ships’ ballast water and sediment // Harmful Algae. 2022. Vol. 114.102220. doi: 10.1007/s11802-020-4480-7.

Tato T., Beiras R. The use of the marine microalga Tisochrysis lutea (T-iso) in standard toxicity tests; comparative sensitivity with other test species // Frontiers in marine science. 2019. Vol. 6. 488 p. doi: 10.3389/fmars.2019.00488.

Wang H., Hu Z., Chai Z., Deng Y. Blooms of Prorocentrum donghaiense reduced the species diversity of dinoflagellate community // Acta oceanologica sinica. 2020. Vol. 39 (4). P. 110–119. doi: 10.1007/s13131-020-1585-1.

Weng H.X., Sun X.W., Weng J.K. Crucial roles of iron in the growth of Prorocentrum micans Ehrenberg (Dinophyceae) // Journal of coastal research. 2008. Vol. 24. P. 176–183. doi: 10.2112/06-0819.1.

Zamani-Ahmadmahmoodi R., Malekabadi M.B., Rahimi R. Aquatic pollution caused by mercury, lead, and cadmium affects cell growth and pigment content of marine microalga, Nannochloropsis oculata // Environmental monitoring and assessment. 2020. Vol. 192 (6). P. 1–11. doi: 10.1007/s10661-020-8222-5.

Загрузки

Опубликован

2023-03-30

Как цитировать

Маркина, Ж. В., Огнистая, А. В., & Зинов, А. А. (2023). ВЛИЯНИЕ ТЯЖЕЛЫХ МЕТАЛЛОВ НА ДИНАМИКУ ЧИСЛЕННОСТИ И ФЛУОРЕСЦЕНТНЫЕ ХАРАКТЕРИСТИКИ PROROCENTRUM FORAMINOSUM (DINOPHYTA). Российский журнал прикладной экологии, (1), 61–68. https://doi.org/10.24852/2411-7374.2023.1.61.68

Выпуск

Раздел

Экспериментальная экология